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A Novel Approach to Diagnosis: Using Convolutional Neural Networks to Classify 
Non-Small Cell Lung Cancers on CT Scans

Abstract
Background: Lung cancer is the leading cause of cancer-related deaths around the world, making early detection vital to treatment and 
survival. However, lung cancer has variable clinical presentations, so diagnosis, even by trained medical professionals, is challenging 
and time- consuming. Deep Learning (DL) has proven effective in training big data to generate accurate diagnoses through classification 
in a timely manner.

Aim and Objective: This study uses data augmentation and hyperparameter optimization methods on convolutional neural networks 
(CNN) to understand the benefits of various architectures in addition to creating an accurate transfer-based tool for lung cancer 
diagnosis on CT scans.

Materials and Methods: We found a dataset composed of chest CT images of patients with non-small cell lung cancers (NSCLC) 
categorized into adenocarcinoma, large cell carcinoma, and squamous cell carcinoma and a control group of normal chest CT scans. 
We tested the CNN architectures VGG16, InceptionV3, ResNet50, and EfficientNetB0 for feature extraction and observed each model 
on a variety of different metrics such as validation accuracy, statistical errors, and learning rate. Each model was trained on the pre-
chosen data set 2 times at 6 and 12 epochs and several evaluation metrics were recorded.

Observation and Results: EfficientNetB0, ResNet50, VGG16, InceptionV3 achieved test accuracies of 98.92%, 91.40%, 77.42%, 70.97% 
respectively when implemented with hyperparameter tuning and dropout layers. EfficientNetB0 also exceeded the other architectures 
in metrics such as precision, recall, and F1-score.

Conclusion: Convolutional neural networks using EfficientNetB0 yielded a higher accuracy in diagnosis of non-small cell cancer on 
CT scan which encourages further research in developing robust diagnostic tools using DL to expedite diagnosis, especially in locations 
with inadequate healthcare resources.
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1. Introduction
Lung cancer is the leading cause of cancer deaths worldwide [1]. 
Furthermore, cancer diagnosis and mortality rates are increasing 
due to the high levels of introduced carcinogens in smoking 
devices, impure water sources, as well as unfiltered exposure 
to chemicals such as asbestos in work environments [2]. Non-
small cell lung cancer accounts for 80% of lung cancer cases 
[3]. The most common subtypes of NSCLC are adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma [3]. Each 
subtype is defined by the difference in tumor characteristics on CT 
and on histopathology. Adenocarcinoma presents as a solid mass 
or nodule in the lung tissue which can vary in size and shape and 

may have irregular or spiculated borders. Further, adenocarcinoma 
can show signs of lymph node involvement, such as enlarged 
lymph nodes near the lungs, and areas of consolidation or ground-
glass opacities in the lungs. Large cell carcinoma includes the 
presence of a large, solid mass or nodule in the lung tissue, which 
appears heterogeneous with irregular borders. Finally, squamous 
cell carcinoma lung cancer typically appears as a centrally located 
mass or nodule in the lung tissue which has a round or oval shape 
with well-defined borders. Squamous cell carcinoma can also 
manifest as areas of cavitation within the tumor, which can be seen 
as hollow spaces or air-filled pockets within the mass [4].
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Early detection of cancer is key for appropriate management and 
better patient survival. Most lung cancers are discovered at an 
advanced stage, and the fact that only 15% of lung cancers are 
discovered in early stages is largely responsible for poor prognosis 
[4]. However, due to its variable clinical presentations, diagnosis of 
lung cancer can be difficult, even by trained medical professionals. 
Generating accurate diagnoses is important for selection of various 
treatment options.

Over the years, the implementation of computer-aided diagnosis 
models (CADs) has become an invaluable cost effective help 
to expedite diagnoses [5]. In our study, we experimented with 
image classification of lung cancer using convolutional neural 
networks (CNNs) and transfer learning. The primary function 
of classification models is to predict the label of a given input 
of data after being trained with similar images from a labeled 
dataset (training dataset). Classifying models will self-evaluate 
their performance on unsupervised machine learning tasks with 
hyperparameters such as loss functions, activation functions, 
logarithmic loss functions, learning rate, and validation accuracy. 
The model’s goal is to learn from its sources of error on the training 
data and use metrics to backpropagate and adjust the importance 
(i.e. weight) of each pixel on its final guess [6].

Transfer learning models are universally trained, pre-existing 
architectures that can be imported onto a dataset and trained onto 
specific data. Each of these models have unique benefits and 
drawbacks depending on the data. EfficientNet is a high-quality 
CNN architecture that targets saturation in models that are made 
with too high resolution and too many parameters to promote 
efficiency. This design uses compound scaling to highlight 
important regions without compromising input image quality. 
ResNet50 is a traditional neural network that notably uses residual 
connections to skip over redundant layers and max pooling to 
cut down computational costs. InceptionV3 uses an efficient grid 
size reduction and an additional factorization in the third iteration 
to reduce parameters and minimize costs. Lastly, VGG16 limits 
hyperparameters and increases convolutional layers. CNNs place 
convolutional filters on an image to detect important regions and 
adjust weights accordingly to classify images accurately. These 
models have proven to be efficient in processing big data but have 
yet to be assessed for their potential clinical applications. Nearly 
49.9% of lung cancer is seen in patient’s from underdeveloped 
countries [3]. Given the many disparities in the healthcare field in 
under- developed areas, stemming from a lack of diagnosticians 
and medical resources, machine learning and deep learning models 
can be used to increase efficiency and recommend treatment 
options [3].

In this study, we explore the power of previously validated 
architectures, hyperparameter optimization techniques, and 
dropout layers on our model in a holistic format to combat 
these skyrocketing fatalities. We hypothesize that if we use 
hyperparameter optimization paired with the EfficientNetB0 
architecture to classify types of lung cancer on computed 

tomography (CT) scans, then we can create a model with improved 
accuracy compared to other tried and true CNN architectures.

2. Materials and Methods
2.1 Data Collection
We used a pre-existing dataset to train our model, which was made 
publicly available [7]. This data was composed of chest CT scans 
of the following lung cancer subtypes: adenocarcinoma, large cell 
carcinoma, normal chest CT scans (without tumor), and squamous 
cell carcinoma, indexed as 0, 1, 2, 3 respectively. The 1000 images 
were separated by class into training, validation, and testing 
datasets as follows: 70% training (700), 20% validation (200), 
and 10% testing (100). The dataset was compiled from national 
databases at random to remove bias and was cited in multiple peer-
reviewed journal articles.

2.2 Data Augmentation
Data augmentation, a useful tool in classification to create 
generalizable models, was utilized to introduce various orientations 
and motions into the images. Due to the high risk of bias and 
overfitting within our small dataset, we implemented the Keras 
Image Data Generator library and used it to augment the number of 
unique images the model was trained on. The data was preprocessed 
through the Image Data Generator function, which arbitrarily 
modified certain images with one or more transformations (rotation, 
width shift, height shift, zoom, shear (distortion), flip). Parameters 
included: rotation range = 20, width shift range = 0.2, height shift 
range = 0.2, shear range = 0.2, zoom range = 0.2. The model was 
then trained on these modified images, along with images called 
directly from the database, which diversified the images we could 
pass through to get an accurate diagnosis.

2.3 Hyperparameter Optimization
We resize each image to a standard size of 224 pixels by 224 pixels 
and performed hyperparameter tuning using the hyper band search 
algorithm, powered by Keras [6]. The dropout rate, the number 
of times the model can hide nodes and layers, was optimized to 
prevent over fitting and ensure thorough feature extraction.

2.4 CNN Architectures
We experimented with many transfer learning models, including 
ResNet50, InceptionNetV3, EfficentNetB0 and VGG16 
optimizing neural networks around those base models. Each 
model was selected based on various researched benefits and 
drawbacks. After testing the various models to identify the optimal 
architecture, a final convolutional neural network was structured 
and implemented, with an EfficientNetB0 base model, global 
average pooling, batch normalization, dropout layers, and dense 
layers added in. A learning rate of 0.001 and the stochastic gradient 
descent (SGD) optimizer were also used as presets.

2.5 Gradient-weighted Class Activation Mapping
Gradient-weighted Class Activation Mapping, or Grad-CAM, 
is a revolutionary technique that helps the viewer understand 
which parts of a given image a neural network is focusing on 
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when making classification and weight-adjusting decisions. 
Specifically, when classifying lung cancer CT scans, Grad-CAM 
can show diagnosticians the specific areas in the scans that the 
model is looking at to identify cancerous tissue. Grad-CAM was 
implemented in our final neural network to analyze diagnosis and 
explain reasoning to diagnosticians.

2.6 Large Language Models
We verified and elaborated on our results by implementing large 
language models (LLMs) to explain our results in conjunction with 
Grad-CAM. Large language models refer to large AI platforms 
that are pre-trained on vast amounts of data (i.e. ChatGPT, Google 
Gemini, Microsoft Copilot) to generate text and speech-based 
responses to a series of prompts. We used Google Gemini, calling 
gen_model.generate_content() on the prompt and the Grad-CAM 
image, then printing it to the console using response.resolve () and 
response.text. We fed our model’s predicted cancer classification 

and our grad-CAM heatmap into a large language model to 
interpret and output an explanation for the errors in our model and 
directions for diagnosticians viewing the image. We used clinical 
definitions and symptoms of the 3 cancers, as well as normal CT 
scans as inputs to our LLM to make sure our program did not 
incorporate unnecessary or unverifiable data.

3. Results
We tested the CNN architectures VGG16, InceptionV3, ResNet50, 
and EfficientNetB0 to compare their efficacy on our augmented 
dataset. The models were chosen based on their diverse set of 
strengths and weaknesses. Distinguishing the most efficient and 
accurate model is important to identify optimal architectures for 
future diagnostic tools. Each model was trained on the pre-chosen 
data set 2 times at 6 and 12 epochs and several evaluation metrics 
were recorded. 

 
 

Figure 1: Validation accuracy for all models tested at 6 epochs. Line graph showing percentage of correct 
classifications for each model. Accuracy of 1 indicates no incorrect classifications. Accuracy of 0 indicates no 
correct classifications. Measured at intervals of 2 training cycles for a total of 6 training cycles. No patience was set. 

 

 
Figure 2: Validation accuracy for all models tested at 12 epochs. Line graph showing percentage of correct 
classifications for each model. Accuracy of 1 indicates no incorrect classifications. Accuracy of 0 indicates no 
correct classifications. Measured at intervals of 2 training cycles for a total of 12 training cycles. 

 
We observed that the average accuracies of all models increased as the number of epochs increased (Figure 1 & 2). 
However, our EfficientNetB0 model achieved the highest validation accuracy (98.92%) when implemented with 
our hyperparameter tuner and trained at 12 epochs. The InceptionV3 had an initial accuracy of below 50%, which 
could mean that the model was just taking lucky guesses. VGG16 accuracy was not recorded at all epochs because 
the patience expired after 2 stagnant epochs (Figure 2). Learning rate was optimized relative to each model, which 
explained the low patience on VGG16 but higher patience on InceptionV3. Traditional metrics such as precision 
(number of true positive images by total positive images for each class), recall (number of true positives divided by 
true positives plus false negatives for each class), and F1-score (the harmonic mean of precision and recall) were 
calculated using the computer-generated confusion matrices for each model (Table 1). We also generated a 

Figure 1: Validation accuracy for all models tested at 6 epochs. Line graph shows percentage of correct classifications for each model. 
Accuracy of 1 indicates no incorrect classifications. Accuracy of 0 indicates no correct classifications. Measured at intervals of 2 training 
cycles for a total of 6 training cycles. No patience was set.
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Figure 2: Validation accuracy for all models tested at 12 epochs. Line graph showing percentage of correct classifications for each 
model. Accuracy of 1 indicates no incorrect classifications. Accuracy of 0 indicates no correct classifications. Measured at intervals of 2 
training cycles for a total of 12 training cycles.

We observed that the average accuracies of all models increased 
as the number of epochs increased (Figure 1 & 2). However, our 
EfficientNetB0 model achieved the highest validation accuracy 
(98.92%) when implemented with our hyperparameter tuner and 
trained at 12 epochs. The InceptionV3 had an initial accuracy of 
below 50%, which could mean that the model was just making 
lucky guesses. VGG16 accuracy was not recorded at all epochs 
because the patience expired after 2 stagnant epochs (Figure 
2). Learning rate was optimized relative to each model, which 
explained the low patience on VGG16 but higher patience on 

InceptionV3. Traditional metrics such as precision (number of 
true positive images by total positive images for each class), recall 
(number of true positives divided by true positives plus false 
negatives for each class), and F1-score (the harmonic mean of 
precision and recall) were calculated using the computer-generated 
confusion matrices for each model (Table 1). We also generated a 
confusion matrix for our EfficientNetB0 (Figure 3) which shows 
the number of images in our test dataset that the model classified 
as false positive, false negative, true positive, and true negative for 
each class.

confusion matrix for our EfficientNetB0 (Figure 3) which shows the number of images our test dataset classified as 
false positive, false negative, true positive, and true negative for each class. 

 

Figure 3: Confusion Matrix for the EfficientNetB0 model. Indexes of 0, 1, 2, 3 correspond with labels 
Adenocarcinoma, Large Cell Carcinoma, Normal, and Squamous Cell Carcinoma, respectively. Sum of quantities 
in each column indicates how many scans the model categorized into each label (predicted label). Sum of 
quantities per row indicates how many scans belong to each label (true label). 

 
Model Class Precision Recall F1-Score 

VGG16 Adenocarcinoma 0.636 0.807 0.711 
Large Cell undefined (no predictions) 0 undefined 

 Normal 0.977 1 0.988 
Squamous Cell 0.733 0.647 0.687 

InceptionV3 Adenocarcinoma 0.5 0.08 0.138 
Large Cell 0.235 0.666 0.347 
Normal 0.635 0.909 0.748 
Squamous Cell 0.888 0.471 0.616 

ResNet50 Adenocarcinoma 0.857 0.923 0.889 
Large Cell 1 0.333 0.499 
Normal 1 1 1 
Squamous Cell 0.789 0.882 0.833 

EfficientNetB0 Adenocarcinoma 0.963 1 0.982 
Large Cell 1 1 1 
Normal 1 1 1 
Squamous Cell 1 0.941 0.970 

Figure 3: Confusion Matrix for the EfficientNetB0 model. Indexes of 0, 1, 2, 3 correspond with labels Adenocarcinoma, Large Cell 
Carcinoma, Normal, and Squamous Cell Carcinoma, respectively. Sum of quantities in each column indicates how many scans the 
model categorized into each label (predicted label). Sum of quantities per row indicates how many scans belong to each label (true label).
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false positive, false negative, true positive, and true negative for each class. 
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Squamous Cell 0.789 0.882 0.833 

EfficientNetB0 Adenocarcinoma 0.963 1 0.982 
Large Cell 1 1 1 
Normal 1 1 1 
Squamous Cell 1 0.941 0.970 

Table 1: Calculated Precision, Recall, and F1-Scores based on generated confusion matrices for each of the tested models (VGG16, 
InceptionV3, ResNet50, and EfficientNetB0) in each of the classes (Adenocarcinoma, Large Cell Carcinoma, Normal, and Squamous 
Cell Carcinoma). Score of 0 indicates all classifications were missed and score of 1 indicates no errors.

The EfficientNetB0 model was able to generate near-perfect results, 
with limited false positive and false negative rates for each class 
(Table 1). It only misclassified one case of squamous cell cancer as 
adenocarcinoma on CT (Figure 3). The specifics of this oversight 
are observable in our t-distributed stochastic neighbor embedding 
(t-SNE) feature plot (Figure 4), which is an advanced visualization 
technique designed to map high-dimensional data into a lower-
dimensional space while preserving the structure and relationships 

within the data. The algorithm minimizes the divergence between 
these probability distributions using a cost function, ensuring that 
points that are close in the original high-dimensional space remain 
close in the low-dimensional projection. The squamous cell cancer 
was misinterpreted to be an adenocarcinoma likely because the 
tumor characteristics were near the edge of the image, causing the 
model to extract features that led to misdiagnosis.
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Figure 4: t-distributed stochastic neighbor embedding (t-SNE) plot for the EfficientNetB0 model. Model of 
pairwise similarities between data points in the high-dimensional mirrored in a lower- dimensional representation. 
Circles indicate correct classifications of scan; Xs indicate scans classified as wrong label. 

 

4. Discussion 
 
After experimentation, we determined that our most effective model architecture, was EfficientNetB0, which was 
able to accurately classify 98.92% of images and was consistent with our hypothesis,. Other tested models fell short in 
multiple ways. Architectures such as ResNet50, which had a relatively high validation accuracy at all epochs, fell 
short in being able to accurately distinguish between various cancer subtypes. The max pooling in the ResNet50 
model increased overfitting to the dataset, similar to InceptionV3. VGG16 was irrelevant to our data as it limited the 
hyperparameters we set. 
 
Overall, our experimentation with these commonly used model architectures to design our model was successful in 
evaluating the constraints of each design in a practical application. Evaluating each model with various metrics 
clarifies each architecture’s facets and flaws on our dataset. By incorporating hyperparameter optimization, we were 
able to effectively increase our model’s accuracy and case-by-case efficacy by automizing feature extraction through 
the learning rate, loss function, activation function, optimization algorithm, and dropout rate [6]. 
 
We can implement such methods in designing more robust diagnostic tools to be used in clinical settings. Across all 
our models, there was very little misclassification of normal scans as cancerous and cancerous as normal. Further, our 
best-performing model limited misclassification of different types of cancers. This differentiated our EfficientNetB0 
model from many other pre-existing classification tools in the literature. 

Figure 4: t-distributed stochastic neighbor embedding (t-SNE) plot for the EfficientNetB0 model. Model of pairwise similarities between 
data points in the high-dimensional mirrored in a lower- dimensional representation. Circles indicate correct classifications of scan; Xs 
indicate scans classified as wrong label.
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4. Discussion
After experimentation, we determined that our most effective model 
architecture was EfficientNetB0, which was able to accurately 
classify 98.92% of images and was consistent with our hypothesis,. 
Other tested models fell short in multiple ways. Architectures such 
as ResNet50, which had a relatively high validation accuracy at all 
epochs, fell short in being able to accurately distinguish between 
various cancer subtypes. The max pooling in the ResNet50 model 
increased overfitting to the dataset, similar to InceptionV3. VGG16 
was irrelevant to our data as it limited the hyperparameters we set.

Overall, our experimentation with these commonly used model 
architectures to design our model was successful in evaluating the 
constraints of each design in a practical application. Evaluating 
each model with various metrics clarifies each architecture’s 
facets and flaws on our dataset. By incorporating hyperparameter 
optimization, we were able to effectively increase our model’s 
accuracy and case-by-case efficacy by automizing feature 
extraction through the learning rate, loss function, activation 
function, optimization algorithm, and dropout rate [6].

We can implement such methods in designing more robust 
diagnostic tools to be used in clinical settings. Across all tested 
models, there was very little misclassification of normal scans as 
cancerous and cancerous as normal. Further, our best-performing 
model limited misclassification of different types of cancers. This 
differentiated our EfficientNetB0 model from many other pre-
existing classification tools in the literature.
The addition of data augmentation and transformation was 
analogous to diverse CT imaging techniques. Technicians have 
various methods of photographing with the CT machine, putting 
patients in different orientations, capturing blurry images, etc. 
By randomizing images, our model was able to account for this 
variability.

Using data visualization methods such as Grad-CAM and t-SNE 
plots to validate our model’s generalizability further refined 
our final EfficientNetB0 model and was especially useful for 
interpreting the model’s predictions. Moreover, use of t-SNE plots 
was useful to reduce the high-dimensional data of our image to 2 
dimensions to spot patterns and clusters, helping viewers visualize 
how data is organized at a high level, which determined the efficacy 
of our model’s feature extraction.

Our final model uses tools such as explainable AI, like Google’s 
Gemini model, to provide more transparency in the diagnosis, 
making our program accessible to medical professionals and 
patients alike. This increases the overall robustness of the model, 
encouraging images to be interpreted by both AI and medical 
professionals to verify results. Given our results, adopting DL 
models in clinical settings would likely assist diagnosticians in the 
early detection of lung cancer, improving patient outcomes.

In the future, we aim to increase the prevalence of this research 
by testing more models at more epochs with a larger dataset. In 
the development of this program, limited computing power was a 

significant issue. Since the robustness and practical efficacy of an 
DL model is tied to the caliber of the dataset it is trained on, the 
limited scope of our dataset is a significant constraint. Throughout 
our experimentation process, we used data augmentation 
techniques to mitigate this limitation, but regardless, to enhance 
the model’s performance, it is crucial to integrate a more diverse 
dataset. Testing more epochs may reveal other trends in each 
architecture’s accuracy, and may also be a prevalent limitation of 
this experiment.

Further, the dataset we used was compiled by healthcare 
professionals, who selected one slice of the CT scan that exhibited 
signs of lung cancer. While this was necessary for developing our 
model, it does reduce the model’s real-world applicability, since it 
may not reflect the slices that may not show cancerous tissue.

Overall, the implementation of DL for classification of lung 
cancer on CT scans is extremely promising. We experimented 
with various methods to increase accuracy in our models and 
decrease bias in our dataset. We also implemented features such 
as Google’s Gemini software to verify our model’s results and 
inaccuracies. Our research can increase survival rates in lung 
cancer patients by identifying tumors in the early stages by using 
such novel technologies in under-developed areas where health 
care professionals are sparse. In the future, we hope to expand this 
design to classify larger datasets and inputs from various imaging 
modalities.
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