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Introduction
The neurocognitive disorders (NDs) are associated with the primary 
clinical condition of reduced cognitive ability of the individual. 
NDs (neurocognitive disorders) are delirium, accompanied by 
major ND syndrome, minor neurocognitive disorder and different 
etiological subtypes. The NDs may be associated with various 
etiologies such as Alzheimer's disease, vascular disease, Lewy body 
disease, Parkinson's disease, frontotemporal disease, Huntinton's 
disease, prion disease, yet may be drug-induced foreign substance-
induced due to traumatic brain injury caused by HIV infection, 
may be a consequence of multiple etiologies and may be caused 
by another medical condition or related to some other unspecified 
factor. Neurocognitive disorder is not present in the early years of 
life, such as invasive neurodevelopmental disorders. NDs generally 
affect several cognitive domains. The cognitive domains are: a) 
complex attention, b) learning and memory and c) perceptomotor. 
The domain of complex attention is related to sustained attention, 
split attention, selective attention, and processing speed. The learning 
and memory domain includes immediate memory (recent memory, 
track recall and recognition memory) and very long term memory. 
The third domain, the perceptomotor domain, is related to the ability 
of visual perception, visuo-constructive, perceptomotor, praxis and 
gnosia [1-12].

The symptoms related to neurocognitive diseases are observed 
by professionals (clinicians) in standard consultations, which 

are recorded for patient history. Each consultation, as well as the 
symptoms and evolution of the disease, are systematically recorded 
in periodic consultations over time. Therefore, symptoms are 
observed in an orderly manner over time. This set of observations is 
a collection of ordered objects over time. A collection of observations 
made sequentially over time is a time series. One way to model time 
series is from random walk representation [13-18].

Inspired by the development of new tools for analyzing, modeling 
and classifying neurocognitive disorders, we nonetheless report 
the use of random walk technique for modeling and numerical 
simulation of memory loss over time. The memory loss can have 
several etiologies. One of its origins may be dementia due to 
the presence of Lewy bodies. For example, Parkinson's disease 
shows the presence of Lewy bodies. Lewy bodies are abnormal 
clumps of alpha-synuclein protein [19,20]. Another pathology 
associated with dementia is Alzheimer's disease, which is a chronic 
neurodegenerative disease. Its symptoms appear in a hierarchical 
way, affecting regions ordinally over time. Initially, the first most 
common symptom that arises is recent memory loss, the picture 
evolves with the observation of language difficulties, reduction in 
recognition ability, difficulty in remembering recent events, which is 
in the domain of learning and memory. The progression of the disease 
leads the individual to loss of control of bodily functions, which 
is in the perceptomotor domain. Finally leading to death [21-23].

Observing the set of cognitive domains and their respective 
symptoms, especially the perceptomotor domain. We have modeled 
the perceptomotor domain pathologies from time series. To model 
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the time series we have used the discrete random walking class with 
memory [15-18]. We have simulated the memory reduction from the 
time-dependent truncated Lorentz distribution [24]. The narrowing 
of the distribution is related to reduced ability to remember past 
facts and decisions. Initially, the experiment is performed with 
the truncated Lorentz distribution capable of retrieving a certain 
amount of walker actions, let us say, letter (N). The distribution is 
narrowed to reduce the number of actions the walker can recover, 
let us say:(M < N), which induces damage to the walker's memory. 
This reduction in the number of actions that the random walker 
can retrieve therefore impacts the walker's microscopic actions, 
according to the memory profile shaped by the truncated Lorenz 
probability distribution. The narrowing of the probability distribution 
is associated with short, medium and long term memory impairment 
in an individual with NDs (neurocognitive disorders). The changes 
in the microscopic behavior of random walkers, by analogy, are 
associated with the impact of damage on the perceptomotor 
domain. Therefore, to measure the impact of memory damage on 
the perceptomotor domain, we have measured the Hurst exponent 
that, for random walks, it measures the diffusion regimes. Major 
changes in diffusion regimes in random walks, are measured by (H) 
may be associated with greater probability distribution deformations, 
for example, lower ability to recover past actions. Therefore, from 
the perspective of NDs (neurocognitive disorders), greater memory 
damage may be associated with the observation of pathologies in the 
perceptomotor domain, for example, in the microscopic dynamics 
of random walkers. 

The diffusion regimes can be classified by the Hurst exponent 
as anomalous diffusion.(H≠1⁄2) and ordinary (H=1⁄2). We have 
highlighted two anomalous diffusion regimes, the subdifusive regime 
(H <1⁄2) and the superdifusive regime(H >1⁄2). Typical measures 
of (H), at other intervals, they classify other diffusion regimes [15-
18]. Each observation of the time series, let us say at the instant of 
time, is represented by a step of a random walker who recovers his 
decisions according to Lorentz's memory profile. The microscopic 
dynamics of the set of random walkers, in the way information is 
retrieved, it follows Lorentz's memory profile, which has an impact 
on the measurements of physical observable items.

We have chosen to build our model from memory class random 
walk models. The salient feature for choosing this class of random 
walks is retrieving memories of the past according to a certain 
probability distribution, which we have chosen the truncated Lorentz 
distribution.

Materials and Methods
Inspired by the memory class random walk model, we have proposed 
a memory profile random walk model, according to the truncated 
Lorentz distribution [15-18,24]. In the random walk model with 
uniform memory profile, each step performed at the instant of time 
depends on the walker's entire history. Each state is retrieved equally. 
This is the way to shape random walks with uniform memory profile. 
The probability of retrieving a past decision at the instant of time 
t+1 is 1⁄t. 

The random tours have well-defined stochastic rules. It occurs as 
follows: the walker walks one step to the right +1 or one step left 
-1, with the stochastic evolution equation given by:

                  Xt+1=Xt+σt+1                                                      (1)

for the instant of time t+1. When we decide to take a step to the 
right, for example, a variable σt+1 assumes the value +1 by taking a 
step to the left assumes the value -1. The memory formed of a set of 
random variables σt`  for the instant of time t' < t. The microscopic 
dynamics occur as follows:

(a) in the instant of time t+1, an instant of time: t' is randomly chosen 
with uniform probability of the set: 1,2,3,...,t.

(b) σt+1 is determined stochastically by, σt+1= σt`  with probability p 
and σt+1=-σt` with probability1-p.

The initial moment of the walk, t=1, instant, where the walker 
performs the first step requires a single rule. In the instant of time: 
t=1, the walker is in position X0, moves to the right with probability or 
left with probability 1-q, assuming the value, σ1=+1 with probability 
q or σ1=-1 with probability 1-q. In the instant of time: t, the walker 
position is quantified by the equation: 

                       Xt = X0+∑
t

t'=1 σt'                                              (2)

The parameterpquantifies the likelihood of the walker repeating 
a past action at the instant of time: t'. For (p>1⁄2) the behavior of 
the walker is said to be persistent, characterized by the repetition 
of the same past actions. For (p<1⁄2), the walker makes a decision 
contrary to the decision to past decisions, this behavior is called 
anti-persistent. For the value of (p=1⁄2) the movement is Brownian.
The first and second moments of the position are respectively:

                                                                                              (3)

                                                                                               (4)

In equation (3) we have the situation: δ=2q-1, λ=2p-1 and Γ is the 
gamma function. The parameters (δ) e (λ) are set in the range [-1,1]. 
In the equation (4), note that; for(p < 3⁄4) the second moment is a 
linear function of t, the diffusion is ordinary; for (p > 3⁄4) the second 
moment is a logarithmic function of t, this is the transition point 
between diffusive regimes; on the point (p > 3⁄4) the second time is 
described by a polynomial function of the system is superdifusive 
[15]. 

Our model consists of random walks with an associated memory 
capable of retrieving events from the past according to the memory 
profile described by the truncated Lorentz probability distribution 
function. The probability distribution is used to bring from memory 
at the instant: t+1, a reminder of the set's past: 1,2,3,...,t. In our model 
we have exchanged the uniform distribution for the truncated Lorentz 
distribution. This change is relevant for modeling the memory 
damage introduced by variations in the scale parameter of the 
distribution. We will explain this mechanism later. The truncated 
Lorentz distribution function is described by the equation below:

in which (α = t⁄2) the location parameter relative to the current time 
(t), (β) the scale parameter and P0 is the normalization constant. The 
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Lorentz distribution is defined for our problem in the range [0,+∞). 
The width of the distribution is controlled by the scale parameter 
(β). The bigger it is (β) the greater is the number of possible actions 
the walker can remember; the smaller it is (β), the smaller is the 
number of possible actions the walker can remember, simulating 
memory damage.

We have measured three physical observable items: the Hurst 
exponent, the fractal dimension, and the entropy of information 
adapted to the context of random walks [25]. We have performed 
Hurst exponent measurements to classify diffusion regimes. The 
fractal dimension quantifies the roughness of the curves that emerge 
from random walks. The information entropy measurements are used 
to quantify information loss due to memory damage.

To classify the diffusive regimes in random walks, we have used 
the Hurst exponent. The asymptotic scale law of the mean square 
deviation of position in relation to time allows us to classify diffusive 
removals of random walkers. The mean square deviation is defined 
as follows: ⟨(x-⟨x⟩)2 ⟩=t2H, in which (H) is the exponent of Hurst. 
Computational experiments necessarily imply a finite system 
approach. Finite systems may exhibit behaviors, observed in the 
measurements of the physical observables, that disappear at the 
asymptotic limit, which are known by the name of finite size effects. 
These effects are generously addressed in Statistical Mechanics 
research. [26-33]. In our numerical experiments of finite size random 
walks, the first moment of position grows slower than the second 
moment, implying the approximation ⟨(x-⟨x⟩)2 ⟩≈⟨x2 ⟩. Therefore, 
the measures of (H) can be obtained from the relationship ⟨x2 ⟩=t2H. 

The information entropy measures the overall effect of bit variation 
associated with random walks. The information entropy is described 
by the equation:

                                                                                               (6)

in which Fj (x,t) is the probability distribution of finding random 
walkers in the position x, in the instant of time: t, for a given scale 
parameter value (β).

Results
Typical measures of (H) show that our results show anomalous 
diffusion in the persistence and anti-persistence regions. For (p > 
1⁄2) the walker exhibits persistent behavior, to (p = 1⁄2) the behavior 
is Markovian and for (p < 1⁄2) the behavior is anti-persistent. The 
anomalous diffusion can be classified as superdiffusive (H > 1⁄2), 
normal diffusive (H  = 1⁄2) and subdifusive (H < 1⁄2).

In the figure 1, typical Hurst exponent measurements are displayed 
as a function of the scale parameter (β) and the feedback parameter 
(p). In the figure 1, the color map of the Hurst exponent with various 
shades of purple is shown. The darker shades of purple are related 
to measurements of the Hurst exponent when (H → 1⁄2), as lighter 
shades are related to values of (H → 1). We have noted the emergence 
of the ordinary diffusive regime and the superdiffusive regime. The 
curves are displayed to highlight contours for which the quantitative 
values of the Hurst exponent remain invariant by the scale (β) 
and by feedback (p). The color map is divided into two regions 
by a central region, adjacent to p → 1⁄2, is characterized by the 
diffusive behavior that tends to Brownian behavior, for example 
when (H → 1⁄2). We observed closed and open curves with (H = 1⁄2). 

This region divides two other regions where we have observed the 
superdiffusive regime. The superdiffusive regime arises as it moves 
away from the center of the figure in (p = 1⁄2) for anti-persistence 
regions (p < 1⁄2) and persistence (p > 1⁄2). In the anti-persistence 
region, the superdiffusive regime arises when the memory scale 
varies around typical values (β < 4x104). Besides, we have found 
contours with the superdiffusion regime characterized by several 
intensities of superdiffusion, quantified by measures of H=0.6,0.7 
e 0.9. Therefore, we have highlighted two regions that present a 
change from the ordinary diffusion regime to the superdiffusion 
regime. To note this transient, however, we look at the central part 
of the color map, the region characterized by contours with (H → 
1⁄2), moving away from it towards the anti-persistence region with 
scaling parameter reduction, (β→0) and (p→0), we have found 
the superdiffusion regime. Mainly, this super-diffusive regime was 
found in the regions where (0 < p < 1⁄2) and in the interval of (0 <β 
<4x104 ). To prove the second transition of the diffusion regime, once 
again, starting from the central region of the map, in the vicinity 
of (p = 1⁄2), in the increasing sense of, from the center of the map 
to the persistence region (p > 1⁄2), we have found Hurst exponent 
curves with value spectrum (H > 1⁄2) which classifies this region 
as superdiffusive. We have noted that this region has equi-diffusive 
curves that extend throughout the system, regardless of the order 
of the scale parameter (β). Seeing that these curves present Hurst's 
exponent (H > 1⁄2), which classifies this region as superdiffusive, 
there is therefore a transient region of the ordinary diffusive regime 
(H = 1⁄2) for the superdiffusive regime (H > 1⁄2), insofar as (p → 
1) for all values of (β).

Figure 1: Hurst Exponent Map (H) depending on the feedbackpand 
the scale parameter β. The contours are displayed, highlighting 
curves for which Hurst's exponent is invariant

In the figure 2, typical fractal dimension measurements are displayed 
as a function of the scale parameter (β) and the feedback parameter 
(p). The fractal dimension (D) is a measure of roughness, while (H) is 
a quantity that classifies the diffusion regimes. The fractal dimension 
is related to the Hurst exponent, this relationship is described by 
the following equation:

                 D=δ+1-H                                                          (7)

in which δ is the dimension in Euclidean space, in this case (δ=1). 
The measures of (D) are displayed through the color map of the 
figure 2. The darker shades of purple are related to less rough 
regions than lighter regions. The lighter regions are characterized 
by larger measurements of the fractal dimension, therefore with 
greater roughness. The various shades of purple are associated with 
the measurements of (D) according to the color panel on the right 
side of the (Figure 2).
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Note that according to the equation (7) , the fractal dimension is a 
result of the addition of the term (1-H) to the Euclidean dimension 
(δ). The Euclidean dimension is a dimension without roughness, the 
result of the diffusive process forms a rough object whose roughness 
is quantified by the quantity (D). We have also noted that by the 
mathematical form of the equation (7), (H) and (D) have opposite 
concavities.

In the figure 2, measurements of the fractal dimension show that 
curves with even in the range of 1 < D < 2. Therefore, displaying a 
spectrum of dimension values between an one-dimensional object 
and a two-dimensional object. The three-dimensional diagrams of 
(H) and (D) were designed as two-dimensional maps, which are 
presented in the figures 1 and 2 together, show a scenario that unites 
aspects related to diffusion regimes with roughness characteristics 
for our finite size random walk model. We have designed these 
diagrams, (H) and (D), three-dimensional in the plane (pxβ), noting 
that contour curves arise for (H) and (D), figures 1 and 2, respectively. 
In this analysis, we have noted that the Hurst exponent level curves, 
figure 1, coincide with the roughness level curves, figure 2. We have 
observed that larger measures of (D) are related to lower measures 
of (H), according to the Lorentz distribution deformations, observed 
when we vary the scale parameter (β).

Figure 2: Fractal Dimension Map (D) in function of the feedback (p) 
and the scale parameter (β). The level curves of (D) are displayed, 
they highlight contours where roughness remains invariant to 
variations in (p) and (β).

In the figures 1 and 2, the decentralized regions in relation to the 
feedback parameter (p ≠ 1⁄2) are overdiffused and consequently, 
lower roughness than the regions adjacent to (p = 1⁄2). In 
overdiffusion regions with (p < 1⁄2) e (p > 1⁄2) information loss 
occurs with increasing scale parameter. In the figure 3, information 
entropy measurements are presented. Information Entropy Measures 
Information Loss. 

We have noted that as the memory access scale decreases (β→0), 
greater are the information losses. In regions of anti-persistence 
(p<1⁄2) and persistence (p>1⁄2), we have observed that lower 
information losses are associated with higher scale parameter values 
(β). The scale parameter is related to the random walker's ability 
to retrieve a past decision. Therefore, for our Lorentz memory 
profile finite-size walking model; the more decisions retrieved, 
the smaller the entropy variation (S); the smaller the number of 
decisions retrieved, the greater the entropy variation (S). In the 
persistence region (p>1⁄2), the information loss variation occurs 
less significantly when compared to the anti-persistence region (p 
<1⁄2). As we can see in the figure 3, the anti-persistence region was 
more sensitive, as the entropy variations, the changes of (β), than 
the region of persistence.

According to our numerical experiments, we have highlighte that 
the greatest loss of information occurs in the anti-persistence 
region (β → 0) e (p → 0) (figure 3), which are accompanied by the 
superdiffusive regime (figure 1) and smaller quantitative values of 
the fractal dimension when compared to the values of the adjacent 
regions: a (p = 1⁄2) (figure 2). 

In the persistence region (p > 1⁄2), besides, we have observed at the 
limit of (p →1) for all values of (β), that the loss of information is 
accompanied by the superdiffusive regime (figure 1) and smaller 
quantitative values of the fractal dimension when compared to the 
values of the regions adjacent to (p = 1⁄2) (figure 2), but entropy 
variations are greater in the anti-persistence region.

Figure 3: Information entropy behavior as a function of feedback 
parameter (p) and several scale parameter values (β). Each curve 
is obtained for a specific scale parameter. The values of the scale 
parameter are broken down into the range10-3 < β < 107.

Discussion 
So far we have talked about the physical aspects of random walking, 
highlighting the diffusive aspects, fractal dimension characteristics 
and information entropy aspects. The connection of these physical 
aspects with damage to the NDs perceptomotor cognitive domain is 
accomplished by controlling the scale parameter (β), which quantifies 
how effective is the random walker's ability to take back a decision 
from the past, for example, to bring from memory (set of variables: 
σt' ) a step previously performed with probability according to the 
truncated Lorentz probability distribution. Therefore, the larger the 
scale parameter, the more memory decisions can be retrieved; the 
smaller the magnitude of the scale parameter, the fewer decisions 
can be retrieved from memory. The narrowing of the probability 
distribution by decreasing the scale parameter configures memory 
impairment, which has a consequence on the walker's praxis. The 
limitation of recalled memory decisions has consequences in the 
execution of the random walk, which presents a change in the 
execution of the steps quantified, when it is measured globally 
using Hurst's exponent. We have noted that in the persistence region 
several intensities of the superdiffusive regime were observed; 
in the anti-persistence region, similarly, several intensities of the 
superdiffusive regime were classified. In the region of persistence we 
have found curves of level of (H) parallel to the axis (β). Similarly, 
in the anti-persistence region, we have observed contours of (H), 
that intersect the axes (p) and (β) with downward concavity. Besides, 
for this two regions we have observed that the contours of the 
fractal dimension coincide with the curves of the Hurst exponent. 
However, the variations in information loss were more sensitive 
in the anti-persistence region than in the persistence region as the 
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scale parameter decreases (β → 0), for example, the more memory 
damage, the more praxis-related information is lost. Therefore, the 
greater the memory impairment, the more affected the perceptomotor 
cognitive domain will be.
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