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Survival Analysis of Multiple Myeloma Cancer (MMC) Using the Cox-Proportional 
Hazard Model

Abstract 
Though multiple myeloma cancer (MMC) remains incurable, research into improving the therapeutic strategy has increased 
dramatically in recent years. But it is unclear if sustained improvements have been achieved. We studied the survival times of 
48 patients diagnosed and treated with alkylating agents. The semi-parametric Cox proportional hazard model was employed 
to examine the survival probability taking into account the sixteen risk factors presumed to be contributing to the survival 
times. A careful and rigorous assessment of the risk factors based on the AIC of the stepwise selection technique revealed seven 
risk factors, and one interaction term are statistically significantly contributing to the survival times. They are blood urea 
nitrogen (BUN)/serum creatinine, white blood cells (WBC), Bence Jone protein in the urine (BJPU), fractures, proteinuria, 
gender, platelets, and the interaction of infections and serum calcium. The final Cox-PH model was well-validated and satisfied 
the key assumptions. The identified risk factors are rank according to the prognostic effect on the survival time based on the 
hazard ratio. Blood urea nitrogen (BUN)/serum creatinine was the greatest prognostic factor (most contributing factor, and 
highly negatively related to the MMC deaths or survival times), followed by white blood cells (WBC), and normal platelet 
was found to be the minimum prognostic factor (least contributing factor to MMC death or survival times). This study offers 
prognostic and therapeutic significance for further enhancement in the treatment strategy of the multiple myeloma cancer 
disease.

Introduction
Multiple myeloma cancer (MMC) is a type of cancerous disease 
that remains incurable. The development of MMC (plasma cell 
myeloma) starts from the malignant plasma cell, specifically 
the white blood cell [1]. Myeloma occurs when the plasma cell 
becomes an anomalous caused by the inability of the plasma 
cells to fight against hazardous substances like germs. The name 
multiple myeloma is the consequence of the accumulation of the 
abnormal plasma cells in the bone marrow crowding the active 
blood cells and destroying the solid part of the bone [2-8]. The 
growth of the myeloma cell is given by Figure 1 below [4, 5].

The abnormal plasma cells produce abnormal antibodies that 
cause kidney problems and overly thick blood [9-11]. The initially 
identified causes of MMC are obesity, radiation exposure, family 
history, and certain chemicals [12-15]. Generally, no specific 
risk factors or causes have been identified for patients diagnosed 
with MMC. The recent treatment of MMC is based on high-dose 
chemotherapy, commonly with bortezomib-based regimens, 
and lenalidomide-dexamethasone followed by autologous 
hematopoietic stem-cell transplantation (ASCT). For MMC 
patients under 65 years old, there are suggestions of transplantation 
of a persons’ stem cells [16]. There has been an improved Figure 1: Growth of the Myeloma Cell



Med Clin Res, 2020      Volume 5 | Issue 7 | 148www.medclinres.org

progression-free survival and overall survival for treatment based 
on post-ASCT maintenance therapy with lenalidomide for a patient 
at normal risk [17]. For intermediate and high-risk patients, the 
bortezomib-based maintenance regimen has been reported suitable 
according to a clinical trial conducted in 2012 [18].

There have been some intriguing statistics about multiple myeloma 
cancer in the recent times. 30,000 new patients are reported to be 
diagnosed with MMC in the United States (U.S.) every year, the 
second most common hematologic malignancy in the U.S. [19-
21]. MMC is ranked among the 14 top cancer diseases in the 
U.S., a report by the Surveillance, Epidemiology, and End Results 
(SEER) Cancer Institute in 2019 [2]. SEER reported an estimated 
new cases of 32,110 MMC patients, an increase compared with 
the 24,050 reported in 2014 [3, 6]. Most risk factors of MMC are 
reported to be common among the age, males, black race, and 
families with MMC history [2, 7].

There are no major findings of what specifically causes MMC, 
given that the disease remains incurable. However, research has 
discovered several risk factors presumed to have some relation 
with the duration of the survival of patients with MMC [9, 10]. 
Most of these factors were identified at the time a patient was 
diagnosed with the MMC disease. Some common risk factors 
identified through clinical trials and research studies included 
hemoglobin, immunoglobulin type, extent and type of lesions, 
serum calcium, age, sex, white blood cells, blood urea nitrogen, 
serum calcium, serum albumin, infections, platelets, hemoglobin, 
presence of Bence Jones protein, and performance status, all at 
the time patients were diagnostic with MMC, are believed to have 
contributed to the survival of patients with MMC [10, 19, 20].

A struggle to find a lasting solution or treatment to the incurable 
MMC has resulted in research into some statistical analysis on the 
survival of patients with MMC given the event that a patient died 
or survived. Kaplan-Meier technique has been commonly used 
for analyzing cancer survivorship data in recent times due to the 
simplicity of its usage. It is often used to compare the survival 
difference of observations/groups base on the log-rank test. KM 
is mostly used for longitudinal studies like a cohort study; an 
example to the present study (i.e. the survival time of patients 
diagnosed with multiple myeloma) [22-24]. The disadvantage of 
using KM is that it does not take into consideration the risk factors 
(covariate) contributing to the length of patients’ survival duration 
of the MMC disease, hence, nullifying the relevance of KM if risk 
factors are contributing in the given survival data.

Brain et al [9] used Kaplan-Meier to test whether there was 
a significant difference in the survival duration between the 
categories of risk factors based on the generalized Wilcoxon test 
and the log-rank test. They further used a non-linear Cox regression 
to ascertain the combination of patients’ characteristics relative to 
survival duration. They identified a significant difference in the 
survival duration among patients based on performance status, 
cell mass and percentage labelling index, Nephrotic status, 
Hemoglobin, age, and k/λ subtype. John M. Krall et al developed 
a set-up procedure for selecting variables associated with the 
survival times of patients with MMC utilizing the data used in the 
present study [22]. They found blood urea nitrogen, hemoglobin, 

percent plasma cell in bone marrow, and Serum calcium to be 
associated with the survival of patients with multiple myeloma. 
Shaji K. Kumar et al found continued improvement in survival 
in MMC with changes in early mortality and outcomes in older 
patients. Giampaolo Merlini, Jan G. Waldenstrom, and Suresh D. 
Jayakar [26] proposed a new improved clinical staging system for 
the survival of MMC based on analysis of 123 treated patients. In 
their findings, serum calcium, % bone myeloma plasma cell (% 
BMPC) and serum creatinine/BUN were significantly related to 
the survival of IgG myeloma stage; hemoglobin, serum calcium, 
and M-component related significantly with the survival of IgA 
myeloma stage; and creatinine/BUN, % BMPC and serum calcium 
to be related significantly with the survival of BJ myeloma stage; 
but no significant relation to survival with age or sex. Our study 
found five new significant attributable out of the sixteen risk 
factors presumed to be contributing to the survival times of MMC. 
They are platelets, gender, white blood cells, fractures, and an 
interaction term between infections and serum calcium. In most of 
the research studies, either one or two of the five newly identified 
risk factors were analyzed, but not found significant or not part of 
the data analyses.

We studied the semi-parametric Cox-PH survival analysis of the 
survival times to estimate the survival rate of patients diagnosed 
with multiple myeloma. We utilized the Cox-PH model to analyze 
the proportion of survival time, taking into account the 16 risk 
factors, Table 1, considered to be contributing to the survival 
time of the patients diagnosed with MMC. Thus, we assessed 
the relationship between the proportion of survival time as a 
function of 16 attributable risk factors and two-way interactions 
based on the Cox proportional hazard (PH) model. The significant 
attributable risk factors identified were carefully investigated and 
selected based on the stepwise model selection method, with the 
final model representing the model with the least AIC. The final 
Cox-PH model was validated to satisfy all the key assumptions, 
and no presence of multicollinearity measured based on the 
variance ination factor (VIF).

Data Description
The data was provided by Harley from West Virginia University 
Medical Center [22, 23]. The original data consist of the survival 
times of 72 multiple myeloma cancer (MMC) patients diagnosed 
and treated with alkylating agents [22]. Out of the 72 patients, we 
have 65 complete data of patients on 16 concomitant variables 
(risk factor). The remaining 7 patients’ information were discarded 
due to missing data in at least one of the 16 risk factors. The data 
collection process involved recording the 16 risk factors of the 
patient diagnosed with MMC and monitoring how long the patient 
survived the MMC disease (called the survival time from diagnosis 
to the nearest month). Given the 65 patients with complete data, 
48 were dead, and the remaining 17 were alive. Therefore, our 
analysis involves 48 patients whose survival times are known. 
The response variable is the survival times of the patient, which is 
continuous. Given the 16 risk factors, 11 are continuous, and 5 are 
categorical. Table 1 below gives the complete description of the 
response variable and the 16 risk factors (contributing variables).
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  Table 1: Variables Recorded for Multiple Myeloma Patients

Symbol Variable Name
t Survival time from diagnosis to nearest month +1
X1 Log blood urea nitrogen (BUN)/serum creatinine at 

diagnosis
X2 Hemoglobin at diagnosis
X3 Platelets at diagnosis 0 abnormal, 1 normal
X4 Infections at diagnosis 0 none, 1 present
X5 Age at diagnosis (complete years)
X6 Gender 1 male, 2 female
X7 Log white blood cell (WBC) at diagnosis
X8 Fractures at diagnosis 0 none, 1 present
X9 Log %BM at diagnosis (log % plasma cells in bone 

marrow)
X10 % Lymphocytes in peripheral blood at diagnosis
X11 % Myeloid cells in peripheral blood at diagnosis
X12 Proteinuria at diagnosis
X13 Bence Jone protein in urine at diagnosis 1 present, 2 

none
X14 Total serum protein at diagnosis
X15 Serum globin (gm%) at diagnosis
X16 Serum calcium (mgm%) at diagnosis

Our analysis of the survival times of the 48 MMC patients started 
by first comparing whether there is a difference in the survival 
times between the males and the females using the Kruskal-Wallis 
rank-sum test given in Table 2. The test resulted in a large p - value 
= 0.5224, thus, we do not reject the null hypothesis (i.e. H0:μM 
= μF). Hence, there is strong statistical evidence that the survival 
times of the males and the females are not different. Therefore, we 
utilized the combined data of both males and females for Cox-PH 
analysis of the survival times of the MMC patients.

Table 2: Kruskal-Wallis rank sum test of the Difference in 
Survival probability Between 3p-lognormal and Kaplan Meier.

Type of Test Survival Probability Data: list[Male, 
Female]

Kruskal-Wallis chi - squared( ~2 ) = 
0.40914

p - value = 0.5224

Review of the Cox Proportional Hazard Model
In survival analysis, two things are of utmost importance; time and 
event. Thus, survival analysis models the time an event occurred 
called the survival time. For example, the time a patient died of 
MMC. The survival time can be associated/influenced by one or 
several attributable factors/risks, often termed as covariates by 
most survival analysis literature. Cox proportional hazard model 
is also known as the Cox model, introduced by Cox (1972) has 
been widely recommended for semi-parametric modelling of the 
relationship of the survival time as a function of the covariates 

in survival analysis. A good basic review of the introduction 
and methodology is given by Kleinbaum, and more extensive 
discussions have been provided by Kalbeisch and Prentice [25-31]. 
We are given a brief review of the Cox proportional hazards model 
in this section. An important aspect of the Cox model is the hazard 
function. The hazard function measures the rate of death at time t. 
We define the hazard function as follows; Let random variable T 
denote the survival time with cumulative density function FT(t), 
given by

                               FT(t)=P(T≤t)=∫  fT (t)dt
                           

Thus, FT (t) is the probability of failure by time t and fT (t) = dFT 
(t)/dt is the probability density function. The survival function is 
defined as

                    ST (t) = P(T > t) = 1 - P(T  ≤  t) = 1 - FT (t).

Therefore, the hazard function which examines the risk of 
instantaneous death at time t, is conditional on the survival function 
defined by

From the hazard function given by equation (1), we can obtain the 
cumulative hazard function, expressed as

                                              H(t) =∫   h(s)ds.

The integral can be expressed in close form as H (t) = - ln S (t) 
= - ln R (t). 
The Cox model which includes interacting covariates is expressed 
by the hazard function, estimated as follow:

where t is the survival time, hi(t) is hazard function obtained by the 
set of k covariates, βi  is the coefficients measuring the impact of the 
covariates Xi on hi(t),ρij is the coefficient measuring the impact of 
interacting covariates XiXj on hi(t), α(t) is the baseline value of hi(t) 
if all Xi and XiXj equals zero. The Cox model is a multiple linear 
regression of the logarithmic form of the hazard on Xi’s and XiXj’s, 
with α(t) as an intercept that varies with time t. A major assumption 
of the Cox model is the proportional hazard assumption, which 
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explains that the hazard function of observations (or patients) 
should be proportional and independent of time t [29]. Consider 
the case of two patients i and i' with varying values of covariates; 
the corresponding hazard functions for ith patient is

and the corresponding hazard functions for i'   is

The hazard ratio of the two patients is

Which is independent of time t. The consequence of the above 
hazard ratio implies that the Cox model is a proportional-hazards 
model. The hazard ratio is a relative measure of the hazards 
between observations/groups [28]. We interpret the hazard ratio 
(HR) in the following three ways: (1) HR = 1; implies that there 
is no hazard effect. Thus, the covariates have no relationship 
with the event probability, hence, no influence on the length of 
survival. (2) HR > 1 (i.e. equivalently βi > 0), implies an increase 
in hazard. That is, the covariates have a positive association with 
the event probability, hence, a negative association with the length 
of survival (bad prognostic factor). (3) HR < 1 (i.e. equivalently 
βi < 0), implies a decrease in hazard. That is, the covariates are 
negatively associated with the probability of the event, hence, 
positively associated with the length of survival (good prognostic 
factor). A comprehensive review of the hazard ratio have been 
provided by L. Douglas Case et al [32].

To compute the baseline hazard function, we performed the 
following computation:

Where t1 < t2 < … < tn denote the distinct event times, di is the 
number of events at ti, and R(ti) is the risk set at ti containing all 
individuals still susceptible to the event at ti. The base line hazard 
function can assume any functional form of the covariates. In 
section 1.3.1, we discussed in detail the major assumptions of the 
Cox-PH model. We will show that the assumptions are satisfied 
once we have developed the Cox-PH model for the given data.

Cox-Proportional Hazards (PH) Model Assumptions
A good Cox proportional hazard model should satisfy the following 
three key assumptions, prior to its implementation. Failure to 
satisfy the assumptions will lead to wrong decision about the 
subject matter.

Proportional hazard (PH) assumption
The PH assumption of the Cox model can be assessed based 
on formal statistical tests. A non-statistical significance of the 
covariates and the global test is an indication that the PH assumption 
is valid. Another method to check for the PH assumption is by 
investigating the plot of scaled Schoenfeld residuals against the 
transformed time. The Schoenfeld residuals are independent of 
time; a non-random pattern against time is evidence of a violation 
of the PH assumption. We calculate the Schoenfeld residuals with 
one per observation per covariate. This can be expressed as

Where Xik denotes the value of the kth covariate for ith observation. 
X wik(β, ti) represents the weighted mean values of covariates at risk 
at the given event time, ti, denoted by R(ti), and given by

The weight function, wi(β; ti) for ith observation at risk, R(ti) is the 
probability that observation i fails at time ti, defined by

A positive value of rik depicts an X value higher than expected at 
that death time. For a binary (0, 1) variable, Schoenfeld residuals 
will be between -1 and

In that situation,

Linear functional form of continuous covariates
We assume that the functional form of the covariates are linear. 
T. Therneau and P. Grambsch suggested this assumption could be 
checked by visualizing the plot of Martingale residuals against 
the continuous covariates with fitted lowess (locally weighted 
smoothing) line function. A trend or pattern in the plot is evidence 
of a violation of the linear functional form of the covariates. 
Martingale residual is defined by

Where δi denotes the event indicator for ith observation,   (ti) is 
the estimated cumulative hazard at the final follow-up time for 
ith

 observation, and exp( β1X1i + ...) is the estimated coefficients 
applied to the observed covariate for the ith
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residuals, Mi, have a skewed distribution. The Mi values are
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Rank Covariates coeff ( β ) HR (exp( β )) S.E.( β ) Pr(> | z |) lower .95 upper .95
1 X1 2.008 7.454 0.619 1.165e-3**  2.217 25.056
2 X7 1.878 6.543 0.773 1.505e-2 ** 1.439 29.745
3 X13 1.576 4.835 0.418 1.63e-4   *** 2.131 10.972
4 X8 0.854 2.349 0.409 3.693e-2* 1.053 5.243
5 X4 : X16 0.113 1.121 0.040 4.873e-3  ** 1.035 1.213
6 X12 0.108 1.114 0.030 3.84e-4   *** 1.049 1.183
7 X6 -0.815 0.443 0.391 3.711e-2 * 0.206 0.952
8 X3 -1.608 0.200 0.502 1.355e-3  ** 0.075 0.536
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A positive Martingale residual value implies individuals demised 
too soon, negative value implies individuals lived too long. A 
transformation of  Mi to obtain approximate symmetric distribution 
can be essential. Such a transformation is motivated by deviance 
residuals defined below.

Examining influential observations (or outliers)
In examining influential observations, we visualized the dfbeta 
values. The dfbeta values estimates the influence of ith - case (or 
observation) on the regression coefficients. A very high value 
of dfbeta should be closely investigated. Another technique for 
checking influential observations is by assessing the deviance 
residuals (symmetric/normalized transformation of the Martingale 
residuals) plot. The deviance residual is defined by

Note that di = 0 is only when Mi = 0. The square root shrinks the large 
negative martingale residuals, while the logarithm transformation 
expands those residuals that are close to zero (i.e as n →   ). The 
distribution of the residuals should be roughly symmetrical about 
zero mean and standard deviation of one. A very large/small/
distant deviance residual values indicate influential observations 
or outliers. The values of the deviance residual values can be 
compared with the expected value of survival time. A positive 
value implies individuals demised too soon, negative value implies 
individuals lived too long.

Now, we proceed to develop the Cox-PH model for the survival 
times of multiple myeloma patients. After we develop the model, 
we will verify that the above three assumptions are met to validate 
the applicability and quality of the proposed model.

Proposed Cox-PH Model for the Survival Times of Patients 
with MMC
We started by fitting the Cox-PH model to the survival times t as a 
function of all 16 covariates Xi given in Table 1 together with their 

two-way interactions. A stepwise model selection method was 
adopted to select the final model with the least Akaike information 
criterion (AIC = 2ln(L) + 2k, where L is the value of the maximum 
likelihood function of the model and k represents the estimated 
model parameters) [25]. AIC gives an estimation of the relative 
amount of information missing in the model; hence, the smaller 
the AIC value the better the quality of the model. It deals with the 
danger posed by overfitting or under-fitting the model.

The stepwise model variable selection procedure is one of the 
best ways used for determining significant covariate for Cox-PH 
models. It is based on iterations between forwarding and backward 
steps. All covariates and their interactions are included to be part 
of the “variable list” for selection. The significance levels for entry 
(α entry) and stay (α stay) are suggested to be set at 0.15 or larger 
for being conservative. Then, the best Cox-PH model is obtained 
by manually removing the covariates with p-value > 0.05 one at 
a time until all model coefficients are statistically significant at 
the chosen level of significant, α = 0.05. The final model with all 
significant covariates and possible interactions is the model with 
the least AIC value. Hence, based on the stepwise model selection 
procedure criteria, our final proposed model that significantly 
contributes to the probabilistic survival time of patients diagnosed 
with multiple myeloma includes seven significant contributable 
covariates (risk factors) and one interaction; given by

The Table 3, below displays the estimates of the model coefficients/
parameters, their hazard ratios (HR) (exp (β)), standard error of 
coefficients, statistical significance, and 95% confidence interval. 
The significant contributing coefficients or risk factors have 
been ranked based on the prognostic effect to the survival times 
of patients diagnosed with MMC using the hazard ratio (HR). 
Thus, we ranked from the most contributing factor to the least 
contributing factor to the death or survival times of MMC patients. 
The covariates, X'i s are defined in Table 1.
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Table 3: Ranking of the Significant Contributing Covariates (Risk Factors) Base on Prognostic Effect to the Survival     
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         Table 4: Global statistical significance of the model

Type of test Test statistic df P - value
Likelihood ratio test 32.6 8 7e-05

Wald test 30.38 8 2e-04

Score (log-rank) test 32.49 8 8e-05

              Table 5: First Ten Baseline Hazard Estimates

Obs. Baseline Hazard Time
1 2.498e-06 1.25
2 1.463e-05 2.00
3 1.951e-05 3.00
4 3.162e-05 5.00
5 6.104e-05 6.00
6 8.818e-05 7.00
7 9.806e-05 9.00
8 1.549e-04 11.00 
9 1.676e-04 13.00

10 1.818e-04 14.00

In Table 3, we tested the statistical significance of each of the 
chosen risk factors and interaction (coefficients) in the equation 
(4) based on the p - value from Wald statistic value. All the 
selected risk factors are tested significant, with “three stars ***” 
indicating a very highly statistically significant risk factor. A 
positive coefficient ( β > 0) means a higher hazard rate, and thus a 
bad prognostic factor. By contrast, a negative coefficient ( β < 0) 
means a lower hazard rate, and thus a good prognostic factor. For 
instance, β6 = -0.815 representing gender implies that females are 
good prognostic of the survival time of MMC; thus, females have 
a lower risk of death (higher survival rates) of MMC than males. 
The exp( β ) is the hazard ratio measures the size of the effect of 
the risk factor. Thus, exp(-0.815) = 0.443 < 1 for gender means 
being a female has a reduced risk of dying with MMC than being a 
male. The ranking of the significant attributable risk factors based 
on the HR shows that blood urea nitrogen (BUN)/serum creatinine 
(X1) is the greatest prognostic factor to the survival of MMC, 
followed by white blood cells (WBC) (X7), and platelets (X3) is the 
least prognostic factor. Table 4 displays three different tests for the 
overall significance of the proposed Cox model; the likelihood-
ratio test, the Wald test, and score log-rank statistics. The three 
tests are asymptotically equivalent and give similar results for 
large samples. However, for small samples like in our case, the 
likelihood ratio test is robust and generally preferred. The global 
statistical significance test demonstrates that the proposed Cox-PH 
model in equation (4) is highly statistically significant. In Table 
5, we displayed the baseline hazard function α(t) for the first ten 
observations. Figure 2, below is a graphical display of the results 
given in Table 3 according to the order of prognostic effect based 
on the hazard rate. Clearly, we can see that blood urea nitrogen 
(X1) is the greatest prognostic factor to the survival time of MMC 
patient, followed by white blood cells (X7), and platelets (X3) is the 
least prognostic factor.

       Figure 2: Ranking of Prognostic Eect of Risk Factors

Validation of the Proposed Cox-PH Model
We validated the goodness-of-fit of the proposed Cox-PH model 
by satisfying the three major Cox-PH model assumptions outlined 
in section 1.3.1. Firstly, we verified that the proportional hazard 
assumption is satisfied. Figure 3, shows the plot of the scaled 
Shoenfeld residual against time. It shows that there is no pattern 
as a function of time. Thus, the residuals are randomly scattered 
with no systematic departures from the horizontal fitted smoothing 
spline deep line (i.e. the residuals are independent of time). 
A formal test for the PH assumption is given in Table 6. The 
covariates and the global test are non-statistically significant given 
by the large p-values. This is a further justification of the validity 
of the PH assumption for our proposed model.

           Figure 3: Testing Proportional Hazard Assumption

    Table 6: Formal Test of Proportional Hazard Assumption
Covariate ρ X2 P - value
X1 -0.2136 2.8454 0.0916
X3 0.0636 0.2491 0.6177
X6 0.1391 1.1587 0.2817
X7 -0.1569 1.6895 0.1937
X8 -0.0861 0.3291 0.5662
X12 -0.0323 0.0651 0.7986
X13 -0.0607 0.2348 0.6280
X4 : X16 -0.2067 2.3255 0.1273
GLOBAL NA 7.7505 0.4582

^ 
^ 

^ 

^ 

^ 
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Secondly, we assessed the functional form of continuous 
covariates. The continuous covariates are expected to have a 
linear form. However, categorical covariates do not have any 
issue of nonlinearity. Figure 4 is a plot of Martingale residuals 
against continuous covariates with fitted lowess (locally weighted 
smoothing) function. The plot demonstrates no major trend or 
pattern. Thus, the linear functional form of continuous covariates 
is reasonable. Therefore, continuous covariates have a linear 
functional form. We further investigated the presence of influential 
observations (or outliers). In Figure 5, we plot the magnitude of 
dfbeta against the model coefficients. We can see that there are 

no major Influential observations, given that all the residuals are 
within one standard deviation of the residuals. Multicollinearity 
can negatively impact the precision of the estimated model 
coefficients and prediction. In Table 7, we employed the variance 
inflation factor (VIF) to assess multicollinearity. A V IF > 2.5 and 
V IF > 5 for categorical and continuous covariates, respectively, 
are evidence of the presence of multicollinearity. Given the VIFs 
in Table 7, implies that there is no multicollinearity in our proposed 
Cox PH model.

                              Table 7: Variance Inflation Factor of Model Coecient

Covariates X1 X13 X3 X12 X8 X7 X6 X4   X16

VIF 1.564 1.602 1.283 1.612 1.656 1.574 1.385 1.243

The Proposed Cox-PH Model Survival Function
The survival function of the Cox-PH model is a reverse process of 
the hazard function in equation (1). In equation (1), we are given f 
(t) and S(t), then we proceed to find h(t). In Cox-PH, we find S(t) 
given f(t) and h(t). In addition to the relationship between h(t) and 
S(t) in equation (1), another alternate relation is given by

Figure 4: Assessing the Functional Form of the Continuous 
Covariates

Figure 5: Assessing Influential Observations (or Outliers)      

The Cox-PH model given by equation (2) can be re-written in the 
form

We can modify the Cox-PH model for the survival function by 
employing equation (5) above. Therefore, the survival function of 
the Cox-PH model can be expressed as

where h0(t) is baseline hazard function, which assumes any 
functional form of the covariates. The coefficient parameters of 
the covariates has been estimated, given by Table 3.

In section 1.3.3, we validated the quality of the proposed Cox-
PH model in equation (4) by showing that it satisfied all the three 
model assumptions outlined in section 1.3.1. Given that the model 
is of high quality, we estimated the Cox-PH survival function (i.e. 
the proportions of survival beyond time t) of patients diagnosed 
with multiple myeloma cancer (MMC) as a function of the seven 
covariates (risk factors) and the interaction term, given by equation 
(7). Figure 6 shows the proposed Cox proportional hazard model 
survival function of the survival time. This plot demonstrates the 
predicted survival proportion at any given point in time for the 
mean values of the risk factors. The cox model is very useful in 
predicting the probability of the survival time for an individual 

^ 

^ 

^ (5)

(6)
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patient based on the significant attributable risk factors that we 
have identified. Thus, given that a patient is diagnosed with MMC, 
we put into the model the seven contributing risk factors and the 
interacting factor to estimate the probability of survival beyond a 
given survival time (death time).

Figure 6: Survival Estimate S(t) from the Proposed Cox-PH 
Model

Discussion
The multiple myeloma cancer (MMC) cancer diseases may 
be incurable. However, the introduction of therapeutic agents 
such as thalidomide, lenalidomide, bortezomib, and high-dose 
chemotherapy and stem-cell rescue (ASCT) has improved the 
treatment progress, hence the survival time of the patient. Also, 
many research techniques and approaches have been adopted 
to enhance the patients’ survival time after been diagnosed with 
MMC.

In the present study, we first assessed whether there is a difference 
between the survival times of the MMC males and females given 
by the Kruskal-Wallis rank-sum test in Table 2. It was revealed 
that there is no difference in the survival times of the males and the 
females. Therefore, we performed the Cox-PH model analysis of 
the survival times without considering stratification of the data. We 
then estimated the proportion of the survival time as a function of 
covariates utilizing the Cox proportional hazard regression model.

Our data on the survival times of patients diagnosed with MMC 
included 16 risk factors presumed to be contributing to survival 
times. We used the Cox proportional hazard model to estimate 
the proportion of survival time because it takes into consideration 
the risk factors (covariates) contributing to the patients’ survival 
time. Therefore, we developed the Cox-PH model for the survival 
time of patients diagnosed with MMC base on the sixteen risk 
factors. Our final proposed Cox-PH model given by equation 
(4) identified seven significant risk factors and one interaction 
term as contributing to the survival probability. They are blood 
urea nitrogen (BUN)/serum creatinine, white blood cells (WBC), 
Bence Jone protein in the urine (BJPU), fractures, proteinuria, 
gender, platelets, and the interaction infections and serum calcium. 
It is interesting and highly important to point out that the two 
interacting risk factors do not individually significantly contribute 
to the survival probability, a highly useful finding. Seldom do we 
see interaction terms in Cox-PH models because they are difficult 
to find. However, not including interaction(s) in the Cox-PH model 
given that they exist and affect the survival time of the patient can 
result to the wrong estimation of the proportion of the survival 

time, hence diminishing the true relevance and quality of the Cox-
PH model, and consequently endangering the treatment process of 
the MM cancer disease.

The proposed Cox-PH model satisfied all the key assumptions of the 
Cox-PH model discussed in section (1.3.1). Most research uses the 
Cox-PH models without discussing or validating the assumptions 
that allowed for its usage. Therefore, we cannot justify the 
quality of the Cox-PH model they proposed in their findings. Our 
proposed Cox-PH model is of high quality because the underlying 
key assumptions are satisfied and well-validated. The proposed 
Cox-PH model has the least AIC based on the stepwise model 
selection procedure with uncorrelated covariates given by the very 
small VIF values in Table 7. We rank the identified significant 
attributable risk factors or covariates based on the prognostic effect 
(i.e. the highest contributing factor to MMC deaths to the least 
contributing factor to MMC deaths) on the survival time utilizing 
the hazard ratio. We found all the identified risk factors, except the 
female gender and normal platelet to be highly prognostic factors 
(negatively associated with the survival time).

We found five new risk factors contributing to the survival of patients 
with MMC. They include the individual risk factors platelets, 
gender, white blood cells and fractures; and the interaction term, 
infections and serum calcium. These newly identified risk factors 
are not found in the findings by [9, 22, 19, 26], who developed 
statistical models to determine the association of some risk factors 
to the survival time of MMC. The risk factor, serum calcium was 
individually found to significantly contribute to the survival time 
by [26]. Whereas we found it to be significant as it interacts with 
infections, and it negatively relates to the survival time, given by 
the hazard ratio (HR > 1). However, we believe our model is more 
genuine and accurate, given the fact that the identified significant 
contributing risk factors were carefully assessed and selected based 
on the AIC of stepwise model selection technique, and validated to 
satisfy all the key model assumptions.

Conclusion
We estimated the survival probability of patients diagnosed with 
multiple myeloma cancer (MMC) using the semi-parametric Cox 
proportional hazard model. We believe the proposed Cox-PH 
model given by equation (4) gives an accurate estimate of the 
survival probability of patients diagnosed with MMC. The Cox-
PH model was used to estimate the probability of the survival time 
because it incorporates into the model the additional information 
about risk factors contributing to the survival time. We identified 
seven risk factors and one interaction term as contributing to 
the survival probability of patients diagnosed with MMC. They 
are blood urea nitrogen (BUN)/serum creatinine, white blood 
cells (WBC), Bence Jone protein in the urine (BJPU), fractures, 
proteinuria, gender, platelets, and the interaction of infections and 
serum calcium. The interacting risk factors (infections and serum 
calcium), but individually did not significantly contribute to the 
survival probability. However, both together should be considered 
as significant interaction when identified at the same time a patient 
is diagnosed with MMC. Our final proposed Cox-PH model is 
of very high quality, robust, and efficient given by the fact that 
it satisfies all the key required assumptions in section (1.3.1). 
The stepwise model selection procedure was utilized to carefully 
assess and select the risk factors and the interaction term based on 
their statistical significance to the survival probability.

^ 



Med Clin Res, 2020     Volume 5 | Issue 7 | 155www.medclinres.org

The final proposed Cox-PH model is the model with the least 
AIC. The identified significant contributing risk factors and the 
interaction have been rank according to the prognostic effect on 
the survival time using the hazard ratio. The interaction term 
between infections and serum calcium has been ranked 5, and has 
negative association with the length of survival time of MMC. The 
relevance of the proposed Cox-PH model is that we can estimate 
the survival probability of a patient given the values of the seven 
identified attributable risk factors and the interaction term. Of the 
seven risk factors, four of them, and the interaction term are new 
significant contributing risk factors to the survival time of MMC 
identified by our proposed model, namely; platelets, gender, white 
blood cells and fractures; and the interaction term, infections 
and serum calcium. Our findings offer further prognostic and 
therapeutic importance for decision making for the treatment of 
multiple myeloma cancer.

Base on the Cox-PH analysis of the survival times of the 
MMC patients, we recommend the following. (1) If additional 
information about what is causing the survival time (risk factors) 
is known, then we recommend the use of the Cox proportional 
hazard model to estimate the survival probability. Thus, the Cox-
PH model takes into consideration the additional information 
given by the risk factors, hence the resulting survival probability 
can be more accurate, robust, and efficient. (2) The investigation 
of the significance of interaction terms in Cox-PH models should 
not be overlooked or underestimated because they can greatly 
affect the accurate prediction of the patients’ survival rate of the 
multiple myeloma cancer disease, leading to dangerous medical 
and therapeutic/treatment issues.

References
1. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson 

KC (2009) “Multiple myeloma”. Lancet 374: 32439.
2. SEER Cancer Facts: Myeloma. National Institute. Bethesda, 

MD, https://seer.cancer.gov/statfacts/html/mulmy.html 
3. Daniel S, Jenna Voutsinas, Leslie Bernstein, Sophia S Wang 

(2014) Medication use and multiple myeloma risk Los 
Angelos County. Cancer Causes Control 25: 1233-1237.

4. Plasma Cell Neoplasms (Including Multiple Myeloma) 
Treatment” (2017) National Cancer Institute. https://www.
cancer.gov/types/myeloma/patient/myeloma-treatment-
pdq#section/all 

5. Ferri Fred F (2013) Ferri’s Clinical Advisor 2014 E-Book: 5 
Books in 1. Elsevier Health Sciences 726.

6. Cancer Facts Figures (2014) American Cancer Society, 
url http://www.cancer.org/acs/groups/content/@research/
documents/webcontent/acspc04215.pdf. 

7. Becker N (2011) Epidemiology of multiple myeloma. Recent 
Results Cancer Res 183: 25-35.

8. About Multiple Myeloma. American Cancer Society. https://
www.cancer.org/cancer/multiple-myeloma/about/what-is-
multiple-myeloma.html 

9. BG Durie, SE Salmon, TE Moon (2011) Pretreatment Tumor 
Mass, Cell Kinetics, and Prognosisin Multiple Myeloma. 
Blood 55: 364-372.

10. Alexanian R, Balcerzak S, Bonnet JD, Gehan EA, Haut A, et 
al. (1975) Prognostic factors in multiple myeloma. Cancer 36: 
1192-l2Ol.

11. Van de Donk NW, Mutis T, Poddighe PJ, Lokhorst HM, 
Zweegman S (2016) Diagnosis, risk stratification and 
management of monoclonal gammopathy of undetermined 
significance and smoldering multiple myeloma”. International 
Journal of Laboratory Hematology 38: 11022.

12. World Cancer Report (2014) World Health Organization. 
Chapter 5: 13.

13. Roberts DL, Dive C, Renehan AG (2010) Biological 
mechanisms linking obesity and cancer risk: new perspectives”. 
Annual Review of Medicine 61: 30116.

14. Dutta AK, Hewett DR, Fink JL, Grady JP, Zannettino AC 
(2017) Cutting edge genomics reveal new insights into tumour 
development, disease progression and therapeutic impacts in 
multiple myeloma”. British Journal of Haematology 178: 
196-208.

15. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso 
NE, et al. (2009) Monoclonal gammopathy of undetermined 
significance (MGUS) consistently precedes multiple 
myeloma: a prospective study”. Blood 113: 54127.

16. Kyle RA, Rajkumar SV (2008) “Multiple myeloma”. Blood 
111: 296-272.

17. McCarthy PL, Holstein SA (2017) Lenalidomide Maintenance 
After Autologous Stem Cell Transplant in Newly Diagnosed 
Multiple Myeloma: a Meta-Analysis”. J Clin Oncol 35: 3279-
3289.

18. Sonneveld P (2012) “Bortezomib induction and maintenance 
treatment in patients with newly diagnosed multiple 
myeloma”. J Clin Oncol 30: 294-655.

19. Durie BG, Salmon SE (1975) A clinical staging system for 
multiple myeloma. Cancer 36: 842-854.

20. Bergsagel DE (1975) Plasma cell myeloma: Prognostic factors 
and criteria of response to therapy, in Staquet Mi (ed): Cancer 
Therapy. New York, Raven 1975: 73-87.

21. Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics CA 
Cancer. J Clin 67: 730.

22. John M Krall, Vinceent A, Uthofi John, B Harley (1975) A set-
up procedure for selecting variables associated with survival. 
Biometrics 31: 49-57.

23. Harley JB (1971) Ten years of experience in multiple myeloma 
at the West Virginia University Hospital. In preparation. 
Morgantown, West Virginia.

24. Meyer Bruce D (1990) Unemployment Insurance and 
Unemployment Spells” (PDF). Econometrica 58: 757-782.

25. H Akaike (1974) A new look at the statistical model 
identication, IEEE Trans. Autom Control 19: 716-723.

26. Giampaolo Merlini, Jan G Waldenstrom, Suresh D Jayakar 
(1980) A New Improved Clinical Staging System for Multiple 
Myeloma Based on Analysis of 123 Treated Patients. Blood 
55: 1011-1019.

27. Cox David R (1972) Regression Models and Life-Tables”. 
Journal of the Royal Statistical Society. Series B 34: 187-220.

28. L Douglas Case (2002) Interpreting Measures of Treatment 
Effect in Cancer Clinical Trials”. The Oncologist 7: 181-187.

29. Brody Tom (2011) Clinical Trials: Study Design, Endpoints 
and Biomarkers, Drug Safety, and FDA and ICH Guidelines. 
Academic Press 2011: 165-168.

30. Kleinbaum DG (1997) Survival Analysis: A Self-Learning 
Text. New York: Springer 1997: 1-324.

31. Kalbeisch JD, Prentice RL (1980) The Statistical Analysis of 
Failure Time Data. New York: John Wiley Sons 1980: 1-321.



32. L Douglas Case, Gretchen Kimmick, Electra D Paskett, Kurt 
Lohman, Robert Tucker (2002) Interpreting Measures of 
Treatment Effect in Cancer Clinical Trials. The Oncologist 7: 
181-187. 

Copyright: ©2020 Lohuwa Mamudu., This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

Med Clin Res, 2020     Volume 5 | Issue 7 | 156www.medclinres.org

Citation: Lohuwa Mamudu, Chris P Tsokos and Otunuga Oluwaseun E  (2020) Survival Analysis of Multiple Myeloma Cancer (MMC) 
Using the Cox-Proportional Hazard Model.  Journal of Medical & Clinical Research  5(7):147-156.


